

NOAKA Digital Collaboration 2020

Equinor / Aker BP / Aker Solutions / Aibel

The �DISC objective is to achieve

a Seamless, Standardized, Secured and Verified Dataflow

enabled by <u>PCA library services</u>,

to accelerate Project Execution and streamline

Operational Processes for greater efficiency

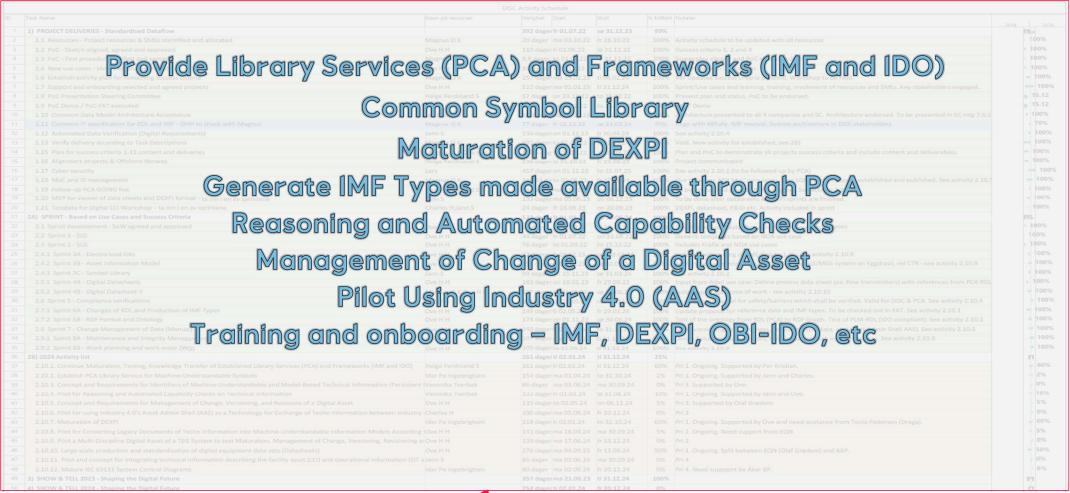
ORGANISATION

Work Group

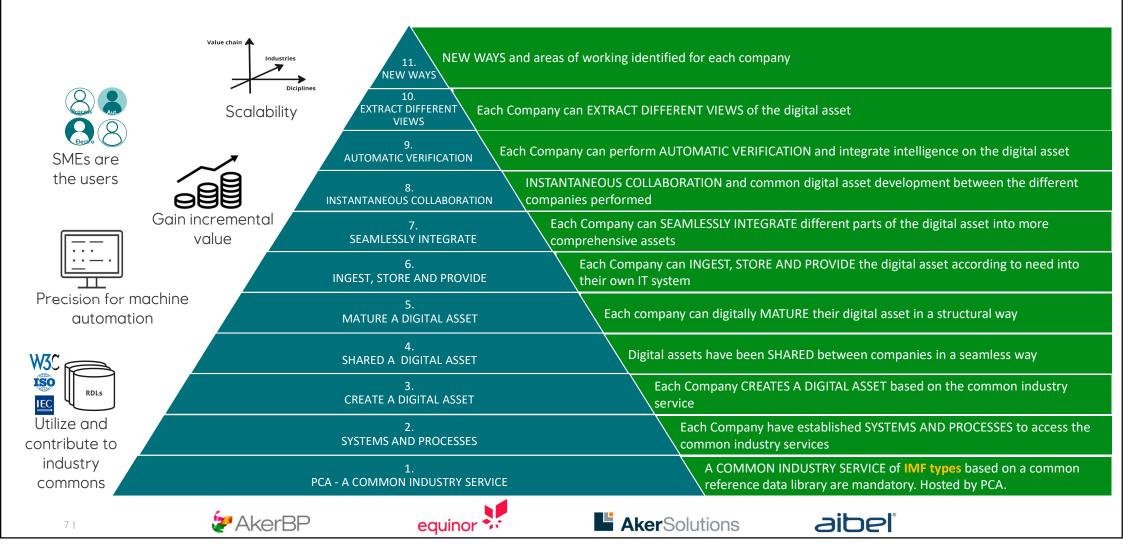
- Charles Halaas Aibel
- Idar Pe Ingebrigtsen Equinor
- Jann Slettebakk Aker Solutions
- Tonje Sandnes Blix Aker Solutions
- Helge Ferdinand Schjøtt Aker BP
- Ove Heitmann Hansen Aker BP
- Veronica Tverbakk Aker BP
- Lars Dag Berthinussen PCA
- Fredrik Valde Antonisen Webstep
- Pål Rylandsholm DNV

Steering Committee

- Ellen Christine Karlsen Aibel
- Per Kristian Veiberg Equinor
- Nina Solie Aker Solutions
- Steinar Mollan Aker BP



ACTIVITIES



DIGITALISATION - INDUSTRIALISATION - STANDARDISATION - COLLABORATION

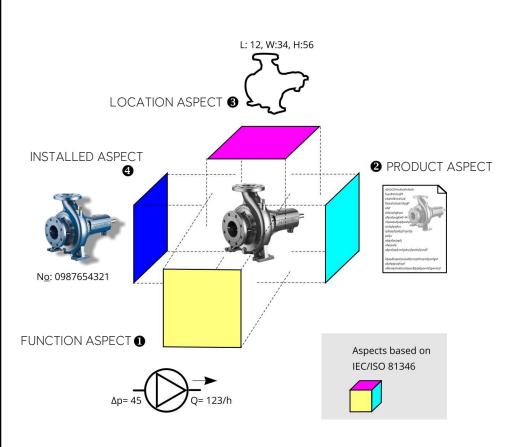
SUCCESS CRITERIA AND ROADMAP

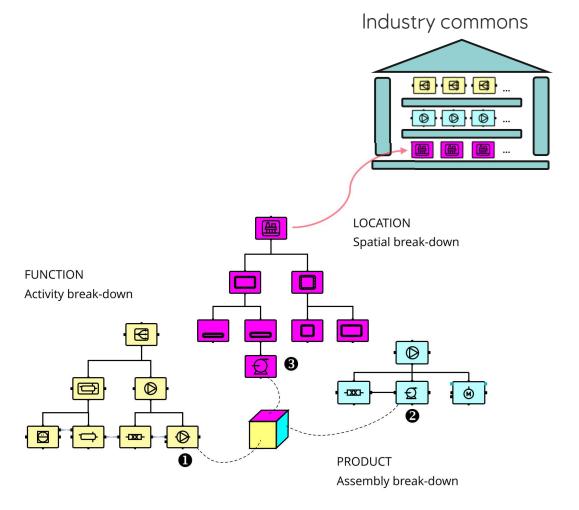
WHAT IS THE IMF (Information Modelling Framework)

The **IMF** is a method, a framework, and a language that allows creating an engineering friendly description of a Facility Asset, using graphical figures and common industry reference data libraries.

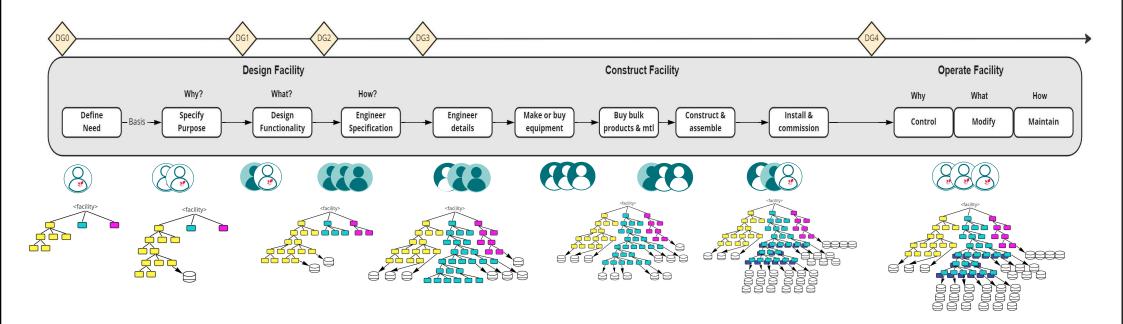
The libraries contains definitions of elements (IMF Types) that are frequently re-used.

The resulting Information Model of the Facility Asset contains information in a format which is **readable to humans as well as to computers**.





THE IMF

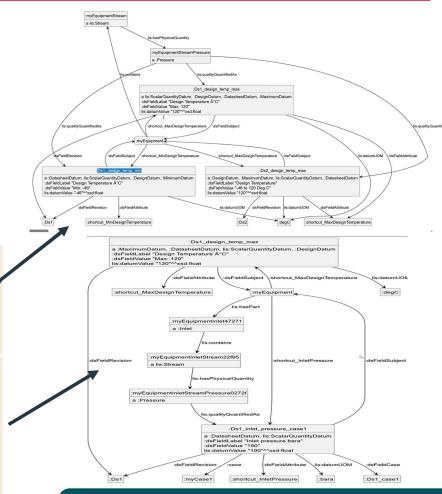


THE IMF

DIGITALISATION - INDUSTRIALISATION - STANDARDISATION - COLLABORATION

FROM DATASHEET TO DIGITAL DATASET

		NORSOK	Statoil AkerSolutions		Project No Project Name Site Location Client Name Client Proj. N	Nor Sta	a Krog th Sea									
1	Rev.	GENERAL		Rev.												
2	06	Service	OIL CHOKE OUTLET WELLHEAD AS	02	Tag No.		8	13HCV0330								
3	-	Supplier		-	Location co	ode		W200								
4	06	Manufacturer	Koso Kent Introl	-	Requisition											
5	06	Model	Introl 73	-	Purchase o	order										
6		Serial No.		03	P&ID Numi	ber		P-XB-1303-01								
7	02	Procurement package	EJ214	05	Pipe Line N			3L0301-0800 PR-GD200X-01050N								
8		Equipment no.		1	Page Line i	*Ullipol	-	3L0302-0800 PR-GD200X-01050N								
9	_	Equipment Conditions		_												
10	06	Linesize in		1	8											
,	06	Linesize out		-	8											
12	-	Line rating in		_	2500											
13		Line rating out		1	2500											
4	01	Pipe spec, in		-	GD200X											
	01	Pipe spec. out		_	GD200X											
16	-	Design Temperature	*C	+	Min: -46			Max: 120								
7	01	Design Pressure	berg		Min: FV			Max: 400								
8	01	Maximum Operating Tempe			118		_	MAX. 400								
9	0.1	Fluid	ature	+	HC Gas/ H	C Limite/	Motor									
0	02	Phase	M M	C Liquidi i	ivalei											
21	02	Corrosive compounds		-	Carbon Dic	unida Mad		N. J. Lilia								
22	_	Operating Conditions		-	Carbori DK	ixiue, nyu	logen :	sulprilide								
13	09	Case Conditions		0-	se 1 - Today		- 1	Case 2 - Future								
14	09	Total flowrate	ka/hi		se i - roday		6000	2000i								
5	09	HC gas flowrate	kg/hi				9910									
10	09	HC liquid flowrate	kg/hi				6090	1554								
17	09	Temperature	kgm *C				80	445								
8	09	Inlet pressure	bers				190	21								
9	09	Pressure drop	bera				128	21								
0	09	Liquid specific gravity @T&F		-			0,819	0.83								
1	09	Liquid viscosity @T&P	dP	-				0,03								
12	09						3,6	9,								
3		Liquid vapour pressure @To														
	09	Liquid critical pressure	bara				129	14								
14	09	Vapour molecular weight	g/mol	4			18,33	18,1								
88	09	Vapour compressibility factor	r	⊢			0,92	0,8								
8	09	Vapour specific heat ratio		-			1,6	1,7								
17	_	Special Conditions		₩												
18	<u> </u>	Maximum shut-off delta P	bar	1	400											
	_	Tight shut-off		\vdash												
	06	Opening/Closing time	secs	1	34	/ 34										
10		Failure action (power/signal)		_	Stay in leaf position /	Stay in last p	oston									
10	02	OTE:														
10	NO			DATASHEET HAS BEEN UPDATED TO REFLECT SIZING FOR TRIM WITH Cv = 30.												
10	NO DA	TASHEET HAS BEEN U						ORIGINAL DATASHEET IS VOIDED, BUT NOTES FROM ORIGINAL SIZING ARE KEPT.								
10 11 12 13	NO DA	TASHEET HAS BEEN U						T.								
10 11 12 13 14	NO DA	TASHEET HAS BEEN U						ч.								
10 11 12 13 14 15	NO DA	TASHEET HAS BEEN U						т.								
10 11 12 13 14 15 16	NO DA	TASHEET HAS BEEN U						ч.								
10 11 12 13 14 15 16 17	NO DA	TASHEET HAS BEEN U						т.								
10 11 12 13 14 15 16 17 18	NO DA OR	TÄSHEET HAS BEEN U IGINAL DATASHEET IS			RIGINAL S	IZING AR	E KEF									
10 11 12 13 14 15 16 17 18	NO DA OR	TASHEET HAS BEEN U	VOIDED, BUT NOTES FRO		RIGINAL S	IZING AR	E KEF	ı vy Document number 1%								


Datasheets (Excel) in pdf, implicit information and underspecified fields

28	09	Inlet pressure bara	190	
1				
16		Design Temperature °C	Min: -46	Max: 120
17	01	Design Pressure barg	Min: FV	Max: 400

We give properties like inlet pressure, design temperature and design pressure and their units of measure precise interpretations and publish these to the common industry service (PCA) for public use

```
dsa:82c7d416-2e24-47f0-8c09-8b2ec5e4b2bb
        rdf:type
                               ds:QuantityDatum , ds:DatasheetDatum ;
        rdfs:label
                                "design temperature max datum" ;
        lis:quantifiesQuality dsa:ele728c0-b872-4c1c-a47f-f13070da2980
        ds:datumValue
                                "120"^^xsd:decimal;
        ds:dsFieldAttribute
                               rdl:design temperature max ;
        ds:dsFieldLabel
                                "Design Temperature °C";
        ds:dsFieldSubject
                               dsa:C132-KA-P-DS-0008-stream :
        ds:dsFieldValue
                                "Max: 120"
        ds:dsRevision
                               dsa:C132-KA-P-DS-0008-02 Rev09;
        ds:uom
                               rdl:degree Celsius .
dsa:80244475-4367-44a5-9d94-cbe01cba33d0
        rdf:type
                               ds:DatasheetDatum , ds:QuantityDatum ;
                               "inlet pressure_datum" ;
        rdfs:label
        lis:quantifiesQuality dsa:abb65dc0-40b6-4a42-a7d9-67d60afd7a59
                               "190"^^xsd:decimal
       ds:datumValue
        ds:dsFieldAttribute
                               rdl:inlet pressure :
                               dsa:C132-KA-P-DS-0008-case1;
       ds:dsFieldCase
        ds:dsFieldLabel
                               "Inlet pressure";
                               dsa:exRev09
       ds:dsFieldRevision
       ds:dsFieldSubject
                               dsa:13HCV0330 ;
        ds:dsFieldValue
                               "190"
        ds:dsRevision
                               dsa:C132-KA-P-DS-0008-02 Rev09;
       ds:uom
                               rdl:bar absolute .
```

Each line/item in the datasheet becomes a graph

The whole datasheet becomes a graph/model/IDO ontology for the equipment and processes that the datasheet describes

IMF RELEVANT STANDARDS (orange and underlined)

Semantic modeling – Resource Description Framework – OWL2 **Abstract** and SKOS schema W3C recommended ontologies and WL2, SKOS Senantic Ontologies dechnology generic ISO 23726 Process / Oil / Gas / Energy facilities modeling with OWL2 Concept representation Information concepts for Process / Oil / Gas / Energy facilities 61360, 81346, 61355, relative to design or operational purpose **15926-4, 14** 14224, 15288 **Industry Information Structures** Industry standardization efforts on information structures and Exchange Standards and exchange formats CFIHOS, DEXPI, Industrie 4.0, JSON Schema **Industry Design Standards** Industry and "region" design / safety / conformity standards NORSOK, IEC, ISO, EAN, ANSI, IEEE **Industry Requirements Standardization** Industry / domain standardization of information JIP33, READI (NORSOK Technical) Activity PURPOSEFUL / CORRECT information Process / Activity Information Scope Tool support for CORRECT information Authoring Systems Information Infrastructure Detailed, Customer ENS / Code requirements **Engineering Numbering Systems** company specific Measures for COMPLETE information **Digital Twin (Functional) Scope DT Applications Service information**

BUSINESS VALUE EXAMPLE FOR DIGITAL GREENFIELD (Johan Castberg)

- 7 000 000 engineering hours in DG3-DG4 (construction phase)
- 2100000 hours estimated to be manually tasks
- Human error rate set to 2%, giving 50 000 errors (P&ID, PFD, SLD, SCD, ELL, etc)
- Time to correct each error set to 10 hours
- Time needed to correct errors 500 000 hours
- ✓ Approximate cost associated with correcting human errors (updates, alteration and modifications) estimated to \$100 million
- ✓ The DISC collaboration project are aiming to demonstrate that by going from document to data, we can reduce human errors by at least 50% = \$50 million.

USE CASE PRESENTED AT DISC SHOW & TELL September 4, 2024

«The Broken Pump»

a WEBSTEP presentation https://www.youtube.com/watch?v=5nElXZlkzy4

Opportunities given by structured data Munin TEG/MEG pump replacement

by Bård Henning Tvedt & Martin Ulvesæter

USEFUL LINKS

PCA (POSC Caesar Association) Library Services https://www.posccaesar.org/

PCA on YouTube https://www.youtube.com/@POSCCaesarAssociation/videos

DISC Show & Tell September 4th 2024 https://www.youtube.com/watch?v=W4Qyf0lGLt0

IOGP Standards https://www.iogp.org/bookstore/product-category/standards/

EqHub Vendor Documentation https://collabor8.no/services/eqhub/

TIRC Z-018 Requirement Catalog https://tirc.collabor8.no/#/navigator

CFIHOS 1.5.1 Data Model https://www.jip36-cfihos.org/datamodel/v1.5.1/

DEXPI Data Exchange https://dexpi.org/

