

ISO 19008: Standard Cost Coding System for oil and gas production and processing facilities. - Statoil experiences in using a Standard Cost Coding System within cost estimating, experience data, benchmarking and analysis

Rune Hellem, Statoil, Project leader for ISO 19008 and Olav Theodorsen, Statoil, Advisor Benchmarking and analysis International ISO standardization seminar for the reliability technology and cost area. Statoil Business Centre, Stavanger, Norway, 26 April 2016

Content

- Background and status of developing ISO 19008
- ISO 19008 Standard Cost Coding System (SCCS)
 - Users
 - Codes and relationships
- Experience database
 - Collecting data
 - From SCCS to WBS
 - Use of Quantitative Experience database
- Benchmarking and Analysis
 - Objectives with Benchmarking
 - Statoil's Benchmarking Hierarchy

ISO 19008 - Standard Cost Coding System (SCCS) for oil and gas production and processing facilities

ISO 19008 development - background and status

- Developed as a joint Norwegian Operator committee. First edition 1989, accepted as a NORSOK Standard in 2002, (NORSOK Z-014). Rev. 2, May 2012
- NWIP to develop ISO 19008 based on NORSOK Z-014 approved March 2013
 - Expert members from 7 countries; Denmark, Germany, Italy, Kazakhstan, Netherlands, Norway,
 UK
 - Companies involved; DONG energy, Statoil, Tullow Oil, Eni, Shell, Wintershall, NCOC
- DIS approved 27 October 2015 by 17 countries out of 18
- FDIS ballot planned to start 28 April 2016
- Publication expected Q3 2016

ISO 19008 SCCS

· The ISO to be organised in:

- a main document
- three normative Annexes containing each of the coding structures PBS, SAB and COR with code, code name and definition
- one informative Annex containing examples of use:
 - coded estimate
 - mapping between SAB-COR, PBS-COR, SAB-PBS
- The details in the Annexes will be available through a link to ISO Maintenance portal containing an ISO 19008 folder. The tables in electronic format (Excel files) will be placed here.

@ ISO 2015 - All rights reserved

ISO/TC 67

Date: 2015-12-22

IOGP Draft ISO/FDIS 19008:2015(E)

ISO/TC 67/WG 4

Secretariat: NEN

Petroleum, petrochemical and natural gas industries - Standard Cost Coding System for oil and gas production and processing facilities

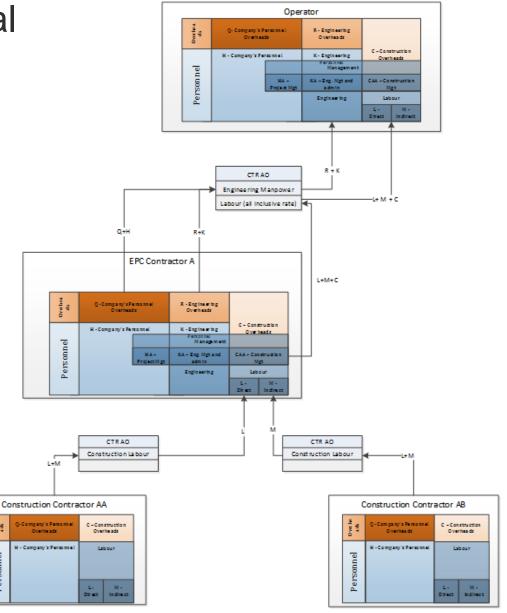
IOGP Conditions and Disclaimer

This draft document has been prepared as part of IOGP's standards development activity and is transferred to the ISO/TC 67 Socretariat for the sole purpose of balloting and/or publication and on the condition that no other circulation is permitted prior to such ISO balloting and/or publication occurring.

Whilst every effort has been made to ensure the accuracy of the information contained in this draft document, neither the IOGP nor any of its members past present of future warrants its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made thereof, which liability is hereby excluded. Consequently, such use is at the recipient's own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms.

These Terms and Conditions shall be governed by and construed in accordance with the laws of England and Wales. Disputes arising here from shall be exclusively subject to the jurisdiction of the courts of England and Wales.

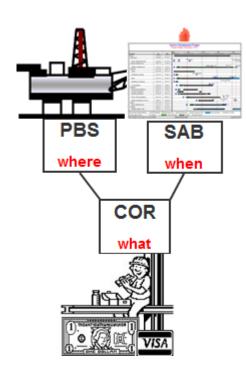
Document type: International Standard Document subtype: Document stage: (50) Approval Document language: E

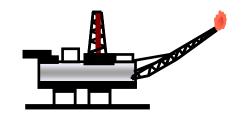

U:\Projecten_Mandaten\8018100034 OGP Standards Solution\Projects\19008\IOGP Draft ISO FDIS 19008 doe STDVersion 2.5a

Users of this International Standard

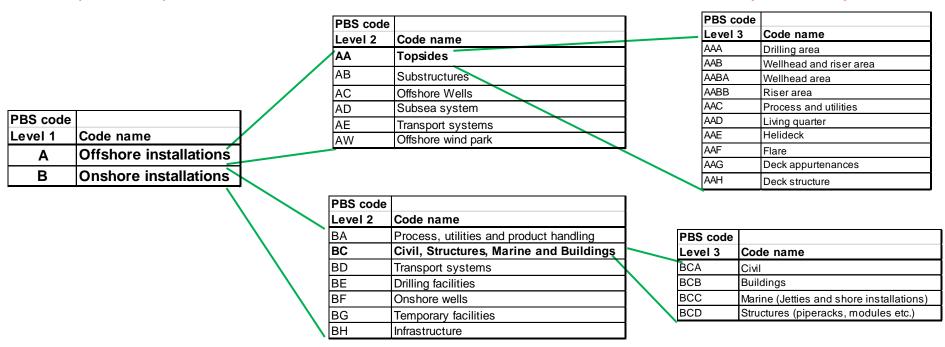
- Operator
- Company
- Contractor

Both contractor and company can be using the SCCS for classifying their cost data.

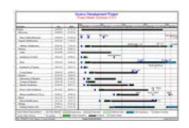

The appropriate codes to be used internally for cost management and controls can differ from the ones presented to the client for the CTR, but will usually be composed/aggregated according to the requirements of the client.

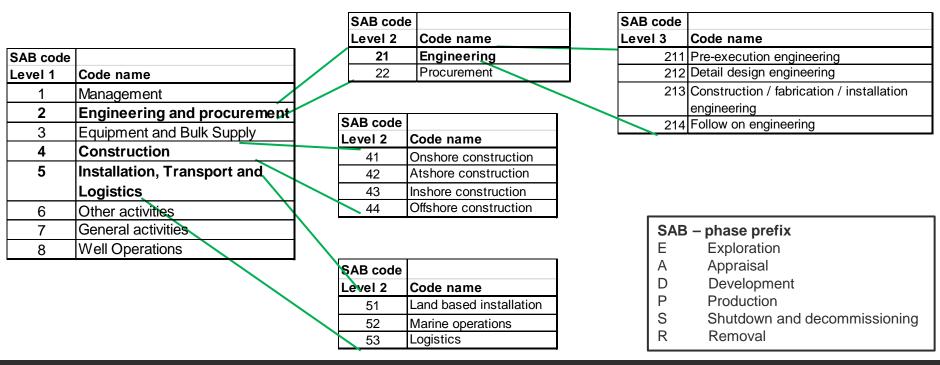

ISO 19008 - Standard Cost Coding System (SCCS) PBS, SAB and COR

- A project independent coding system is necessary to identify cost, quantities, rates and norms across different projects
- SCCS is not a project specific coding system opposed to WBS coding which is linked to the contract structure during project execution
- Every cost item will be associated with a scope of work and so can be classified by each of the three aspects/facets. Each of the classifications in the facet has a numerical or alphabetical hierarchical code.
- The codes are combined to create a complete composite code for the costs. The nominated order for the composite codes is: PBS, SAB, COR.



PBS - Physical Breakdown Structure Hierarchical breakdown


- Defines the physical/functional components of field installations.
- Enables an oil and gas production and processing facility configuration scheme to be classified.
- System/facilities descriptions in PBS are only intended to **provide guidelines for cost coding**, as the systems/facilities normally are designed and laid out differently and uniquely for each development project according to technical and functional requirements, construction philosophy and project realisation strategies.
- As a system/facility can cross individual PBS boundaries, there is no exact correlation between a system/facility and PBS.



2016-02-17

SAB – Standard Activity Breakdown Hierarchical breakdown

- Classifies the activity component of scope of work.
- The **alphabetical phase prefix** introduces a code for use of SCCS throughout all phases of a project, from exploration through removal of facilities.

2016-02-17

COR - Code Of Resource Hierarchical breakdown

- Classifies all project resources according to the type of contract/resource that is involved in the activity and has an associated set of rates.
- Classifies the complete scale of resources involved in developing offshore and onshore facilities.

COR code				
Level 1	Code name			
COR code	Code name			
Α	General costs			
E	Equipment			
В	Bulk materials			
K	Engineering personnel			
R	Engineering overheads			
L	Direct labour			
M	Indirect labour			
С	Construction overheads			
Н	Company personnel			
Q	Company personnel overheads			
Q S X	Unit work			
Χ	Marine operations and logistics			
Υ	Land based plant and equipment			

COR code				
Level 2	Code name			
EA	Architectural equipment			
ED	Drilling equipment			
EE	Electrical equipment			
EG	Heating, ventilation and air conditioning			
	(HVAC) equipment			
EJ	Instrumentation equipment			
ER	Mechanical equipment			
ES	Safety/escape and firefighting equipment			
ET	Telecommunication equipment			
EU	Subsea equipment			
EV	Mooring and marine equipment			
EY	Transfer and control equipment			

COR code				
Level 3	Code name			
ERC	Miscellaneous mechanical equipment			
ERD	Drivers and power transmissions			
ERF	Heaters, boilers, furnaces and flares			
ERH	Heat transfer equipment			
ERK	Compressors, blowers and expanders			
ERM	Material and product handling equipment			
ERN	Mechanical equipment – solids			
ERP	Pumps			
ERT	Storage tanks/containment equipment –			
	atmospheric			
ERV	Vessels and columns – pressurised			
ERX	Miscellaneous package units			

Is this much?

Johan Sverdrup P1 platform

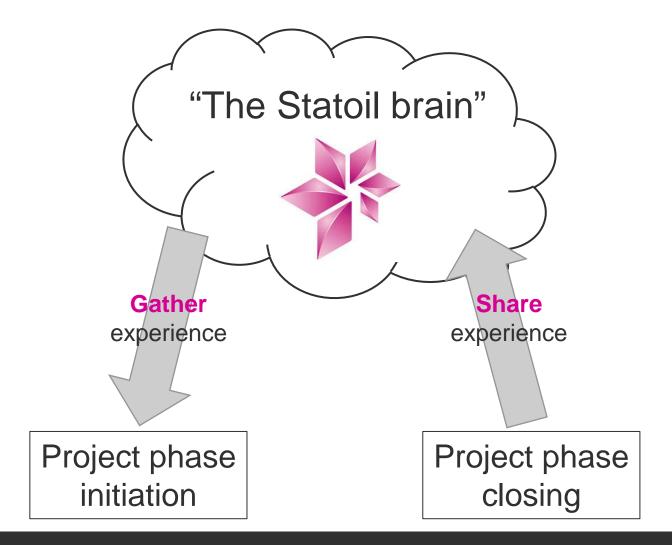
Hyme subsea project

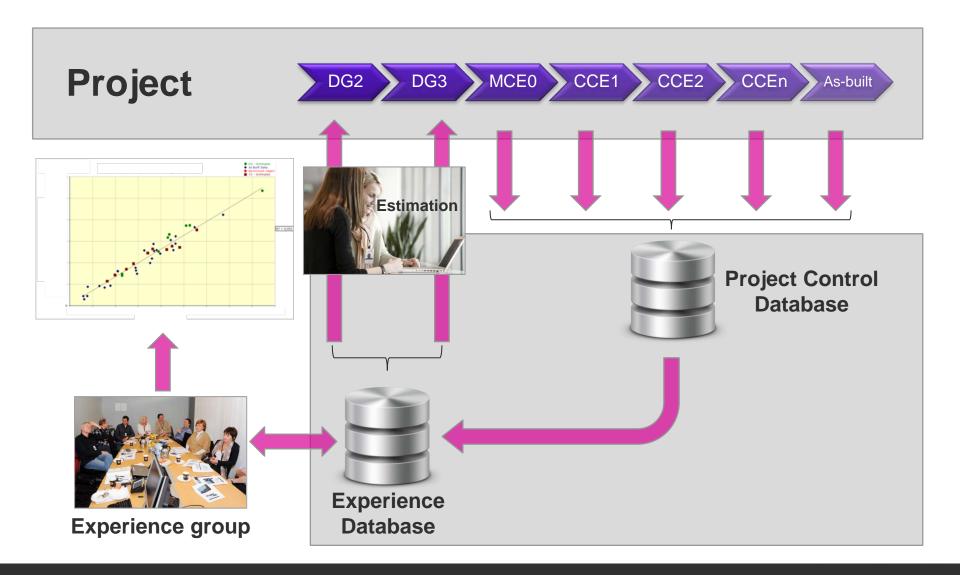
Statpipe Gas Processing Plant (Kårstø)

18 000 mill. NOK

2 000 mill. NOK

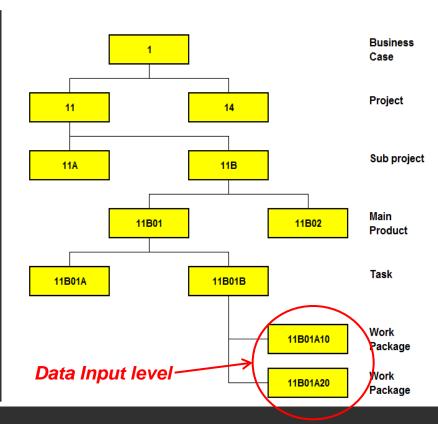
8 000 mill. NOK




Quantitative experience data stored in Statoil's Experience Database

The Experience data Process

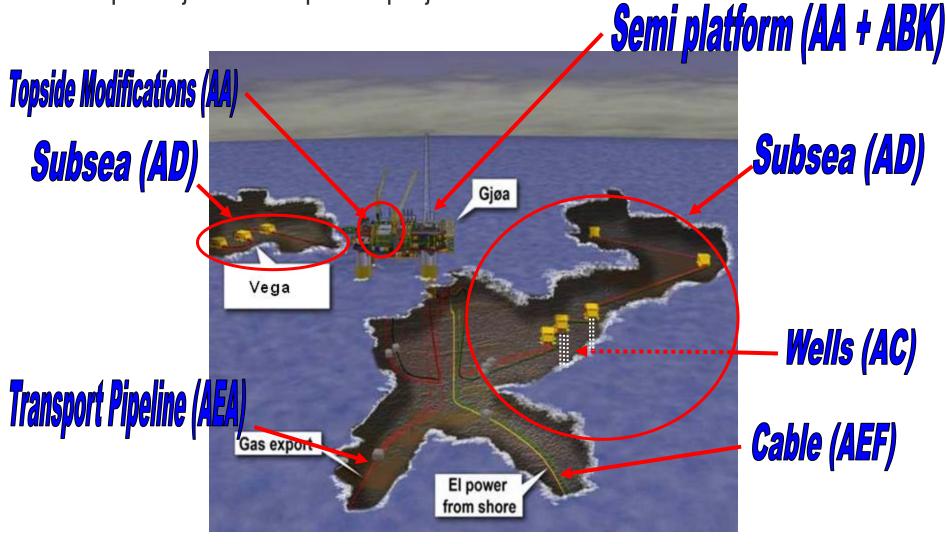
Transfer of Experience data


From SCCS coded Estimate to WBS

- Cost estimate established by estimating department
- Restructure cost estimate according to work packages for follow up in execution phase

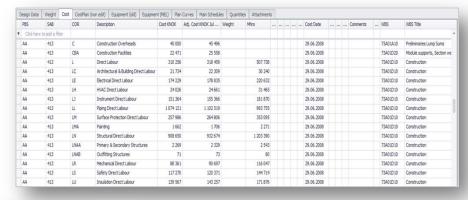
Estimate Main Contract Packages

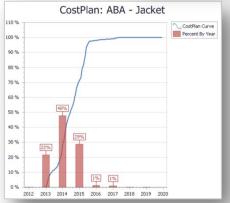
			1	1		
SCCS			Statoil Project X (Example)			
PBS	SAB	COR	Description		Platform Modification	Heavy Lift
<u>AA</u> AA	211	H K	Pre-DG3 Management Pre-DG3 Studies	Concept Development	Contractor 1	Statoil
AA	1	Н	Management	Project Management	Statoil	
AA	211	K	FEED	FEED	Feed Contractor	
AA			Incl. mhr-rate	Preliminary		
AA	212	K	Detail Engineering	Detail engineering		
AA	31	E	Equipment	Procurement		
AA	32	В	Bulk		EPC (I)	Heavy Lift
AA	4141	L	Prefab.	Fabrication	Contractor	Contractor
AA	4442	L	Installation work	Installation		
AA	5231	XC	Lifting			
AA	447	L	Commiss.	Comm.assist.		
AA	12	HFB	Management	Commissioni ng / testing	Statoil	N/A

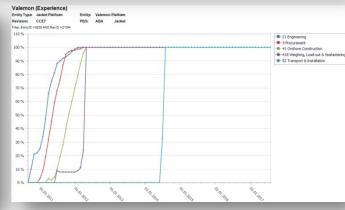

WBS structure

Storage of experience data by Project and PBS

Example: Gjøa development project

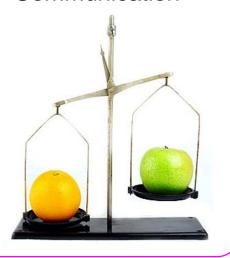

Amount of Experience data (per April 2016)

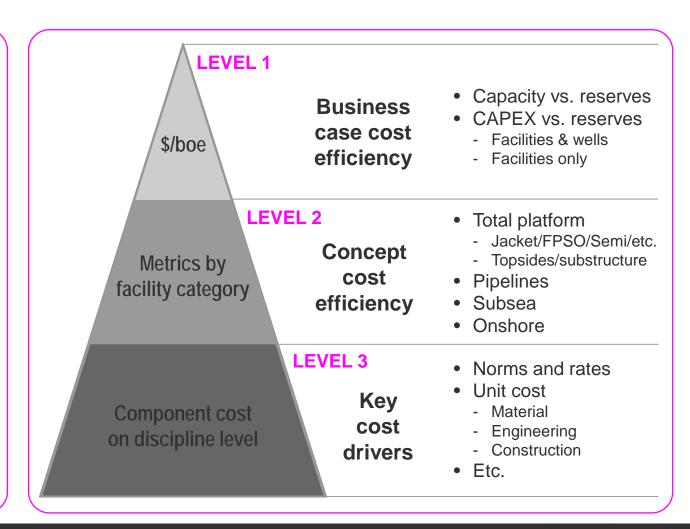

Facility Category	No.
Topside Modifications	205
Platform	138
Subsea	122
Onshore Facilities	111
Transport Pipeline	90
Wells	72
Offshore Storage and Offtake System	12
Offshore Cable-Umbilical	12
Offshore Bridge	8
Offshore Fibre Optic Cable	8
Onshore Cable-Umbilical	7
Cessation Platform	4
Cessation Subsea	2



Quantitative data available in Database

- Project cost and quantities at a detailed level
- Cost plan (investment profile)
- Currency shares from contracts
- Design data
- Overall quantities (weights, man-hours etc.)
- Main Schedules & milestones
- Progress curves

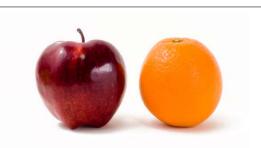



Benchmarking and Analysis

Benchmarking

Why benchmarking:

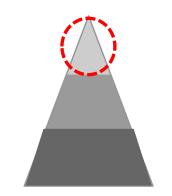
- Decision support
- Estimate calibration
- QC of estimates
- Challenge technical
- Communication

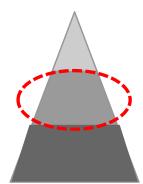


Benchmarking

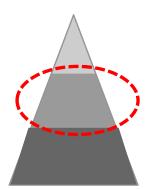
What we try to avoid:

What we hope to achieve:


Where we usually end up:


Benchmarks - Level 1

CAPEX/boed vs. Recoverable reserve (Mboe) (Stand alone vs. Subsea tie-back field development)

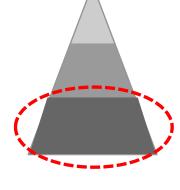

Benchmark graphs removed due to confidentiality

Benchmark Level 2 – Topside cost vs. weight All platforms, All regions

Benchmark graphs removed due to confidentiality

Benchmark Level 2 - Topside cost vs. weight Semi platforms – Norwegian Continental Shelf (NCS)

Benchmark graphs removed due to confidentiality


Benchmarks – Level 3 Norms & Rates - Input to Estimation tools

- Norms (Manhours / tonnes)
 - Engineering (by discipline)
 - Onshore/Atshore Construction (by discipline)
 - Offshore Construction (by discipline)

- Equipment (by system / COR / package)
- Bulk (by discipline)
- Manhour rates (NOK / Manhour)
 - Engineering
 - Onshore/Atshore Construction
 - Offshore Construction
 - Company Management
 - Project Completion
- Other Norms and rates
 - Detailed Piping norms and rates (by category, matr. quality & dimension)
 - Marine Operations (day rates per vessel)

There's never been a better time for good ideas

ISO 19008: Standard Cost Coding System for oil and gas production and processing facilities - Statoil applications

2016-02-17

Rune Hellem and Olav Theodorsen, Advisors Cost estimating

www.statoil.com

